Design, additive manufacture and clinical application of a patient-specific titanium implant to anatomically reconstruct a large chest wall defect

Author:

Gonzalez Alvarez Alba,Evans Peter Ll.,Dovgalski Lawrence,Goldsmith Ira

Abstract

Purpose Chest wall reconstruction of large oncological defects following resection is challenging. Traditional management involves the use of different materials that surgeons creatively shape intraoperatively to restore the excised anatomy. This is time-consuming, difficult to mould into shape and causes some complications such as dislocation or paradoxical movement. This study aims to present the development and clinical implantation of a novel custom-made three-dimensional (3D) laser melting titanium alloy implant that reconstructs a large chest wall resection and maintains the integrity of the thoracic cage. Design/methodology/approach The whole development process of the novel implant is described: design specifications, computed tomography (CT) scan manipulation, 3D computer-assisted design (CAD), rapid prototyping, final manufacture and clinical implantation. A multidisciplinary collaboration in between engineers and surgeons guided the iterative design process. Findings The implant provided excellent aesthetical and functional results. The virtual planning and production of the implant prior to surgery reduced surgery time and uncertainty. It also improved safety and accuracy. The implant sited nicely on the patient anatomy after resection following the virtual plan. At six months following implantation, there were no implant-related complications of pain, infection, dislocation or paradoxical movement. This technique offered a fast lead-time for implant production, which is crucial for oncological treatment. Research limitations/implications More cases and a long-term follow-up are needed to confirm and quantify the benefits of this procedure; further research is also required to design a solution that better mimics the chest wall biomechanics while preventing implant complications. Originality/value The authors present a novel custom thoracic implant that provided a satisfactory reconstruction of a large chest wall defect, developed and implanted within three weeks to address a fast-growing chondrosarcoma. Furthermore, the authors describe its development process in detail as a design guideline, discussing potential improvements and critical design considerations so that this study can be replicated for future cases.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

1. A technique for pediatric chest wall reconstruction using custom-designed titanium implants: description of technique and report of two cases;Journal of Children's Orthopaedics,2016

2. Dynamic 3D printed titanium copy prosthesis: a novel design for large chest wall resection and reconstruction;Journal of Thoracic Disease,2016

3. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction;European Journal of Cardio-Thoracic Surgery,2015

4. Sternal replacement with a custom-made titanium plate after resection of a solitary breast cancer metastasis;Interactive Cardiovascular and Thoracic Surgery,2013

5. Implantation of a 3D-printed titanium sternum in a patient with a sternal tumor;World Journal of Surgical Oncology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3