Experimental investigations into additive manufacturing of styrene-ethylene-butylene-styrene block copolymers using solvent cast 3D printing technique

Author:

Kumar Arun,Pandey Pulak Mohan,Jha Sunil,Banerjee Shib Shankar

Abstract

Purpose This paper aims to discuss the successful 3D printing of styrene–ethylene–butylene–styrene (SEBS) block copolymers using solvent-cast 3D printing (SC-3DP) technique. Design/methodology/approach Three different Kraton grade SEBS block copolymers were used to prepare viscous polymer solutions (ink) in three different solvents, namely, toluene, cyclopentane and tetrahydrofuran. Hansen solubility parameters (HSPs) were taken into account to understand the solvent–polymer interactions. Ultraviolet–visible spectroscopy was used to analyze transmittance behavior of different inks. Printability of ink samples was compared in terms of shape retention capability, solvent evaporation and shear viscosity. Dimensional deviations in 3D-printed parts were evaluated in terms of percentage shrinkage. Surface morphology of 3D-printed parts was investigated by scanning electron microscope. In addition, mechanical properties and rheology of the SC-3D-printed SEBS samples were also investigated. Findings HSP analysis revealed toluene to be the most suitable solvent for SC-3DP. Cyclopentane showed a strong preferential solubility toward the ethylene–butylene block. Microscopic surface cracks were present on tetrahydrofuran ink-based 3D-printed samples. SC-3D-printed samples exhibited high elongation at break (up to 2,200%) and low tension set (up to 9%). Practical implications SC-3DP proves to be an effective fabrication route for complex SEBS parts overcoming the challenges associated with fused deposition modeling. Originality/value To the best of authors’ knowledge, this is the first report investigating the effect of different solvents on physicomechanical properties of SC-3D-printed SEBS block copolymer samples.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3