Design and optimization of projection stereolithography additive manufacturing system with multi-pass scanning

Author:

Qin Qin,Huang Jigang,Yao Jin,Gao Wenxiang

Abstract

Purpose Scanning projection-based stereolithography (SPSL) is a powerful technology for additive manufacturing with high resolution as well as large building area. However, the surface quality of stitching boundary in an SPSL system has been rarely studied, and no positive settlement was proposed to address the poor stitching quality. This paper aims to propose an approach of multi-pass scanning and a compensation algorithm for multi-pass scanning process to address the issue of poor stitching quality in SPSL systems. Design/methodology/approach The process of multi-pass scanning is realized by scanning regions repeatedly, and the regions can be cured simultaneously because of the very short repeat exposure time and very fast scanning. Then, the poor stitching quality caused by the non-simultaneous curing can be eliminated. Also, a compensation algorithm is designed for multi-pass scanning to reduce the stitching errors. The validity of multi-pass scanning is verified by curing depth test, while the performance of multi-pass scanning as well as proposed compensation algorithm is demonstrated by comparing with that of a previous SPSL system. Findings The results lead to a conclusion that multi-pass scanning with its compensation algorithm is an effective approach to improve the stitching quality of an SPSL system. Practical implications This study can provide advice for researchers to achieve the satisfactory surface finish with SPSL technology. Originality/value The authors proposed a process of multi-pass scanning as well as a compensation algorithm for SPSL additive manufacturing (system to improve the stitching quality, which has rarely been studied in previous work.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3