Nondestructive observation of the surrounding powder in the vicinity of polymer laser-sintered specimens for understanding orange peel formation

Author:

Kobayashi Ryuichi,Yang Ming

Abstract

Purpose Orange peel formation remains to be understood clearly because it is difficult to directly observe a laser-sintered process in a partcake. Therefore, this study aims to provide insight into the orange peel formation mechanism through the nondestructive observation of laser-sintered specimens and their surrounding powders. Design/methodology/approach This study observed polyamide 12 powder in the vicinity of a laser-sintered specimen via X-ray computed tomography (CT) scanning. The specimen for nondestructive observation was 3D modeled in a hollow box using 3D CAD software. The boxes built using a laser-sintering system contained unsintered surrounding powder and sintered specimens. The box contents were preserved even after the boxes were removed from the partcake. After X-ray CT scanning, the authors broke the boxes and evaluated the unevenness formed on the specimen surface (i.e. the orange peel evaluation). Findings Voids (not those in sintered parts) generated in the powder in the vicinity of the specimen triggered the orange peel formation. Voids were less likely to form in the build with a 178.5° powder bed than in the build with a 173.5° powder bed. Similarly, the increment in laser energy density effectively suppressed void formation, although there was a tradeoff with overmelting. Thin-walled parts avoided void growth and made the orange peel less noticeable. Originality/value To the best of the authors’ knowledge, this study is the first to observe and understand the relationship between voids generated in the powder in the vicinity of sintered parts and orange peel formation.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3