Synthesis and optimization for shape memory behaviour of 4D printed GNPs reinforced shape memory photopolymer composite

Author:

Borra N. Dhanunjayarao,Neigapula Venkata Swamy Naidu

Abstract

Purpose Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching, self-assembly and self-tightening. Advancements in today’s technology led to the easy fabrication of such novel materials using 3D printing techniques. When an external stimulus causes a 3D printed specimen to change shape on its own, this process is known as 4D printing. This study aims to investigate the effect of graphene nano platelet (GNPs) on the shape memory behaviour of shape memory photo polymer composites (SMPPCs) and to optimize the shape-changing response by using the Taguchi method. Design/methodology/approach SMPPCs are synthesized by blending different weight fractions (Wt.%) of flexible or soft photopolymer (FPP) resin with hard photopolymer (HPP) resin, then reinforced with GNPs at various Wt.% to the blended PP resin, and then fabricated using masked stereolithography (MSLA) apparatus. The shape memory test is conducted to assess the shape recovery time (T), shape fixity ratio (Rf), shape recovery ratio (Rr) and shape recovery rate (Vr) using Taguchi analysis by constructing an L9 orthogonal array with parameters such as Wt.% of a blend of FPP and HPP resin, Wt.% of GNPs and holding time. Findings SMPPCs with A3, B3 and C2 result in a faster T with 2 s, whereas SMPPCs with A1, B1 and C3 result in a longer T with 21 s. The factors A and B are ranked as the most significant in the Pareto charts that were obtained, whereas C is not significant. It can be seen from the heatmap plot that when factors A and B increase, T is decreasing and Vr is increasing. The optimum parameters for T and Vr are A3, B3 and C2 at the same time for Rf and Rr are A1, B3 and C1. Research limitations/implications Faster shape recovery results from a higher Wt.% of FPP resin in a blend than over a true HPP resin. This is because the flexible polymer links in FPP resin activate more quickly over time. However, a minimum amount of HPP resin also needs to be maintained because it plays a role in producing higher Rf and Vr. The use of GNPs as reinforcement accelerates the T because nanographene conducts heat more quickly, releasing the temporary shape of the specimen more quickly. Originality/value The use of FPP and HPP resin blends, fabricating the 4D-printed SMPPCs specimens with MSLA technology, investigating the effect of GNPs and optimizing the process parameters using Taguchi and the work was validated using confirmation tests and regression analysis, which increases the originality and novelty.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference45 articles.

1. Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites;Procedia Engineering,2012

2. Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models;Rapid Prototyping Journal,2021

3. 4D printing: fundamentals, materials, applications and challenges;Polymer,2021

4. Review of 4D printing materials and reinforced composites: behaviors, applications and challenges;Journal of Science: Advanced Materials and Devices,2021

5. 4D printing materials for vat photopolymerization;Additive Manufacturing,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3