Design optimization of 3D printed flow path plates in high-performance bioethanol fuel cells

Author:

T.S. Manikandamaharaj,B.M. Jaffar Ali

Abstract

Purpose Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the temperature gradient, water flow and distribution of reactants. In that, the design of the bipolar fuel flow path plate plays a vital role in achieving the aforementioned parameters. Further, the bipolar plates contribute 80% of the weight and 30%–40% of its total cost. Aim of this study is to enhance the efficiency of fuel to energy conversion and to minimize the overall cost of production. Design/methodology/approach The authors have specifically designed, simulated and fabricated a standard 2.5 × 2.5 cm2 active area proton exchange membrane (PEM) FC flow path plate to study the performance by varying the flow fields in a single ladder, double ladder and interdigitated and varying channel geometries, namely, half curve, triangle and rectangle. Findings Using the 3D PEMFC model and visualizing the physical and electrochemical processes occurring during the operation of the FCs resulted in a better-performing flow path plate design. It is fabricated by using additive manufacturing technology. In addition, the assembly of the full cell with the designed flow path plate shows about an 11.44% reduction in total weight, which has a significant bearing on its total cost as well as specific energy density in the stack cell. Originality/value Simultaneous optimization of multiple flow path parameters being carried out for better performance is the hallmark of this study which resulted in enhanced energy density and reduced cost of device production.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3