Applications of additive manufacturing at selected South African universities: promoting additive manufacturing education

Author:

Alabi Micheal Omotayo,De Beer Deon,Wichers Harry

Abstract

Purpose This paper aims to provide a comprehensive overview of the recent applications of additive manufacturing (AM) research and activities within selected universities in the Republic of South Africa (SA). Design/methodology/approach The paper is a general review of AM education, research and development effort within selected South African universities. The paper begins by looking at several support programmes and investments in AM technologies by the South African Department of Science and Technology (DST). The paper presents South Africa’s AM journey to date and recent global development in AM education. Next, the paper reviews the recent research activities on AM at four selected South African universities, South Africa AM roadmap and South African AM strategy. The future prospects of AM education and research are then evaluated through a SWOT analysis. Finally, the paper looks at the sustainability of AM from an education perspective. Findings The main lessons that have been learnt from South African AM research activities within selected universities are as follows: AM research activities at South African universities serve as a platform to promote AM education, and several support programmes and investments from South Africa’s DST have greatly enhanced the growth of AM across different sectors, such as medical, manufacturing, industrial design, tooling, jewellery and education. The government support has also assisted in the actualisation of the “Aeroswift” project, the world’s largest and fastest state-of-the-art AM machine that can 3D print metal parts. The AM research activities within South Africa’s universities have shown that it is not too late for developing countries to start and embrace AM technologies both in academia and industry. Based on a SWOT analysis, the future prospects of AM technology in SA are bright. Practical implications Researchers/readers from different backgrounds such as academic, industrial and governmental will be able to learn important lessons from SA’s AM journey and the success of SA’s AM researchers/practitioners. This paper will allow the major investors in AM technologies and business to see great opportunities to invest in AM education and research at all educational levels (i.e. high schools, colleges and universities) in South Africa. Originality/value The authors believe that the progress of AM education and research activities within SA’s universities show good practice and achievement over the years in both the applications of AM and the South African AM strategy introduced to promote AM research and the educational aspect of the technologies.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference62 articles.

1. Benoit, S. (2016), “3D-Printed custom implant helps patient with ossifying fibroma”, available at: www.materialise.com/en/blog/3d-printed-custom-implant-helps-patient-ossifying-fibroma#more-6180 (accessed 13 December 2017).

2. Briggs, S. (2014), “How 3-D printing will change education”, InformED, available at: www.opencolleges.edu.au/informed/features/how-3-d-printing-will-change-education/ (29 November 2017).

3. Rapid prototyping in South Africa: past, present and future;Rapid Prototyping Journal,2005

4. Using-idea 2-product labs as a strategy for accelerating technology transfer;International Journal of Technology Transfer and Commercialisation,2017

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3