Effect of printing parameters on impact energy absorption of additively manufactured hierarchical structures

Author:

Irez Alaeddin Burak,Bilgen Bagci Merve

Abstract

Purpose This study aims to examine how the thickness of layers and printing speed impact the energy absorption capacity of honeycomb structures through drop-weight experiments. In addition, the effect of printing orientation on the resulting microstructure and mechanical performance was targeted to be examined. Design/methodology/approach In this paper, after manufacturing test specimens using fused deposition modeling technique with three distinct layer thicknesses (0.16 mm, 0.20 mm and 0.28 mm) and printing speeds (40 mm/min, 50 mm/min and 70 mm/min), drop weight tests were carried out. Then to see the effect of printing orientation on mechanical performance, three-point-bending tests were performed and damage mechanisms were comparatively examined through scanning electron microscopy. Findings An increase in layer thickness from 0.16 mm to 0.28 mm resulted in a notable 37% decrease in the impact resistance of the printed part. In addition, increasing the printing speed from 50 to 70 mm/min reduced the energy absorption capacity of the printed part by approximately 36.5%. Moreover, in terms of printing direction, transversely printed specimens showed 10% lower flexural strength than longitudinally printed specimens. Finally, scanning electron microscopy (SEM) observation showed that internal defects were more prominent in transversely printed specimens, resulting in premature failure. Furthermore, delamination was also detected in transversely printed specimens as another damage mechanism accelerating material failure. Originality/value It is seen that the effect of printing parameters on the fundamental mechanical properties including tensile strength, strain at break, ductility and elastic modulus were studied by various researchers. However, to the best of authors’ knowledge, the effect of printing speed and layer thickness on the energy absorption of polylactic acid based hexagonal honeycomb was not encountered. In addition, in-depth SEM analysis to discover the influence of printing direction significantly contributes to the literature.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3