Simultaneous balancing and worker assignment problem for mixed-model assembly lines in a make-to-order environment considering control points and assignment restrictions

Author:

Tanhaie Fahimeh,Rabbani Masoud,Manavizadeh Neda

Abstract

Purpose In this study, a mixed-model assembly line (MMAL) balancing problem is applied in a make-to-order (MTO) environment. One of the important problems in MTO systems is identifying the control points, which is considered by designing a control system. Furthermore, the worker assignment problem is defined by considering abilities and operating costs of workers. The proposed model is solved in two stages. First, a multi-objective model by simultaneously minimizing the number of stations and the total cost of the task duplication and workers assignment is considered. The second stage is designing a control system to minimize the work in process. Design/methodology/approach To solve this problem, a non-dominated sorting genetic algorithm (NSGA-II) is introduced and the proposed model is compared with four multi-objective algorithms (MOAs). Findings The proposed model is compared with four MOAs, i.e. multi-objective particle swarm optimization, multi-objective ant colony optimization, multi-objective firefly algorithm and multi-objective simulated annealing algorithm. The computational results of the NSGA-II algorithm are superior to the other algorithms, and multi-objective ant colony optimization has the best running time of the four MOA algorithms. Practical implications With attention to workers assignment in a MTO environment for the MMAL balancing problem, the present research has several significant implications for the rapidly changing manufacturing challenge. Originality/value To the best of the authors’ knowledge, no study has provided for the MMAL balancing problem in a MTO environment considering control points. This study provides the first attempt to fill this research gap. Also, a usual assumption in the literature that common tasks of different models must be assigned to a single station is relaxed and different types of real assignment restrictions like resource restrictions and tasks restrictions are described.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3