Automatic prediction of news intent for search queries

Author:

Zhang Xiaojuan,Han Shuguang,Lu Wei

Abstract

Purpose The purpose of this paper is to predict news intent by exploring contextual and temporal features directly mined from a general search engine query log. Design/methodology/approach First, a ground-truth data set with correctly marked news and non-news queries was built. Second, a detailed analysis of the search goals and topics distribution of news/non-news queries was conducted. Third, three news features, that is, the relationship between entity and contextual words extended from query sessions, topical similarity among clicked results and temporal burst point were obtained. Finally, to understand the utilities of the new features and prior features, extensive prediction experiments on SogouQ (a Chinese search engine query log) were conducted. Findings News intent can be predicted with high accuracy by using the proposed contextual and temporal features, and the macro average F1 of classification is around 0.8677. Contextual features are more effective than temporal features. All the three new features are useful and significant in improving the accuracy of news intent prediction. Originality/value This paper provides a new and different perspective in recognizing queries with news intent without use of such large corpora as social media (e.g. Wikipedia, Twitter and blogs) and news data sets. The research will be helpful for general-purpose search engines to address search intents for news events. In addition, the authors believe that the approaches described here in this paper are general enough to apply to other verticals with dynamic content and interest, such as blog or financial data.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference47 articles.

1. On-line new event detection and tracking,1998

2. Sources of evidence for vertical selection,2009

3. The intention behind web queries,2006

4. Topic-specific analysis of search queries,2009

5. A system for new event detection,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Event-Driven Query Expansion;Proceedings of the 14th ACM International Conference on Web Search and Data Mining;2021-03-08

2. SogouQ: The First Large-Scale Test Collection with Click Streams Used in a Shared-Task Evaluation;Evaluating Information Retrieval and Access Tasks;2020-09-02

3. Time-aware query suggestion diversification for temporally ambiguous queries;The Electronic Library;2020-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3