Multi-granularity hierarchical topic-based segmentation of structured, digital library resources

Author:

Wang Zhongyi,Zhang Jin,Huang Jing

Abstract

Purpose Current segmentation systems almost invariably focus on linear segmentation and can only divide text into linear sequences of segments. This suits cohesive text such as news feed but not coherent texts such as documents of a digital library which have hierarchical structures. To overcome the focus on linear segmentation in document segmentation and to realize the purpose of hierarchical segmentation for a digital library’s structured resources, this paper aimed to propose a new multi-granularity hierarchical topic-based segmentation system (MHTSS) to decide section breaks. Design/methodology/approach MHTSS adopts up-down segmentation strategy to divide a structured, digital library document into a document segmentation tree. Specifically, it works in a three-stage process, such as document parsing, coarse segmentation based on document access structures and fine-grained segmentation based on lexical cohesion. Findings This paper analyzed limitations of document segmentation methods for the structured, digital library resources. Authors found that the combination of document access structures and lexical cohesion techniques should complement each other and allow for a better segmentation of structured, digital library resources. Based on this finding, this paper proposed the MHTSS for the structured, digital library resources. To evaluate it, MHTSS was compared to the TT and C99 algorithms on real-world digital library corpora. Through comparison, it was found that the MHTSS achieves top overall performance. Practical implications With MHTSS, digital library users can get their relevant information directly in segments instead of receiving the whole document. This will improve retrieval performance as well as dramatically reduce information overload. Originality/value This paper proposed MHTSS for the structured, digital library resources, which combines the document access structures and lexical cohesion techniques to decide section breaks. With this system, end-users can access a document by sections through a document structure tree.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference48 articles.

1. Learning for sequence extraction tasks,2000

2. Using lexical chains for text summarization,1999

3. Statistical models for text segmentation;Machine Learning,1999

4. Topic segmentation with an aspect hidden Markov model,2001

5. Discourse segmentation in aid of document summarization,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3