Artificial neural network in soft HR performance management: new insights from a large organizational dataset

Author:

Roedenbeck MarcORCID,Poljsak-Rosinski PetraORCID

Abstract

PurposeThis study investigates whether the artificial neural network approach, when used on a large organizational soft HR performance dataset, results in a better (R2/RMSE) model compared to the linear regression. With the use of predictive modelling, a more informed base for managerial decision making within soft HR performance management is offered.Design/methodology/approachThe study builds on a dataset (n > 43 k) stemming from an annual employee MNC survey. It covers several soft HR performance drivers and outcomes (such as engagement, satisfaction and others) that either have evidence of a dual-role nature or non-linear relationships. This study applies the framework for artificial neural network analysis in organization research (Scarborough and Somers, 2006).FindingsThe analysis reveals a substantial artificial neural network model performance (R2 > 0.75) with an excellent fit statistic (nRMSE <0.10) and all drivers have the same relative importance (RMI [0.102; 0.125]). This predictive analysis revealed that the organization has to increase six of the drivers, keep two on the same level and decrease one.Originality/valueUp to date, this study uses the largest dataset in soft HR performance management. Additionally, the predictive results reveal that specific target values lay below the current levels to achieve optimal performance.

Publisher

Emerald

Subject

Organizational Behavior and Human Resource Management

Reference69 articles.

1. Measuring and managing employee work engagement: a review of the research and business literature;Journal of Workplace Behavioral Health,2009

2. Survey response rate levels and trends in organizational research;Human Relations,2008

3. Becker, B.E. and Huselid, M.A. (1998), “High performance work systems and firm performance: a synthesis of research and managerial implications”, in Ferris, G.R. (Ed.), Research in Personnel and Human Resources Management, JAI Press, pp. 53-101.

4. Innovating through digital revolution: the role of soft skills and Big Data in increasing firm performance;Management Decision,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3