Intrinsic interference suppressed FBMC QAM for MU-MIMO systems in computing and communications

Author:

Y.K. Shobha,H.G. Rangaraju

Abstract

Purpose In order to optimize BER and to substantiate performance measures, initially, the filter bank multicarrier (FBMC) quadrature amplitude modulation (QAM) performance metrics are evaluated with the cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) system. The efficiency of CP-OFDM, as well as FBMC/QAM that is transmitting over specific fading channels, is evaluated in terms of quality trade-off metrics over bit error rate (BER) as well as modulation order. When compared with the traditional FBMC systems, the proposed FBMC QAM system shows better performance. The performance metrics of FBMC/QAM with the inclusion of multiuser multiple-input-multiple-output (MUMIMO) is validated with worst case channel environment. The performance penalty gap that exists in CP- OFDM is compared with improved FBMC QAM in terms of both BER and OOB radiation measures. The BER trade off comparison between ML and MMSE optimally determine the prominent signal detection model for high performance FBMC QAM system. Design/methodology/approach The main objective of this research work is to provide perceptions about performance, co-channel interference avoidance as well as about the techniques that are used for minimizing the complexity of the system that is related to FBMC QAM structure for reducing intrinsic interference with higher spectral features as well as maximal likelihood (ML) detector systems. Findings This research work also looks at the efficiency of multiuser multiple-input-multiple-output (MU-MIMO) FBMC/QAM over nonlinear channels. Furthermore, when compared with OFDM, it also significantly reduces the penalty gap efficiency, thereby enabling the accessibility of the proposed FBMC QAM system from BER as well as implementation point of view. Finally, the signal detection is facilitated by the sub-detector and is achieved on the downlink side by making use of threshold-driven statistical measures that accurately minimize the complexity trade-off measures of the ML detector over modulation order. The computation of the proposed FBMC method’s BER performance measures was carried out through MATLAB simulation environments, as well as efficiency of the suggested work was demonstrated through detailed analyses. Originality/value This research work intend to combine the efficient MU-MIMO based transmission scheme with optimal FBMC/QAM for improved QoS over highly nonlinear channels which includes both delay spread and Doppler effects. And optimal signal detection model is facilitated at the downlink side by making use of threshold-driven statistical measures that accurately minimize the complexity trade-off measures of the ML detector over modulation order. The computation of the proposed FBMC method’s BER performance measures was carried out through MATLAB simulation environments, as well as efficiency of the suggested work was demonstrated through detailed analyses.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference35 articles.

1. Walsh Hadamard precoded circular filter multicarrier communication;Bank;Journal of Engineering Sciences,2017

2. Massive MIMO: ten myths and one critical question;IEEE Communications Magazine,2016

3. A millimeter wave dual-lens antenna for IoT based smart parking radar system;IEEE Internet of Things Journal,2020

4. Transmitter-receiver designs for highly frequency selective channels in MIMO FBMC systems;IEEE Transactions on Signal Processing,2012

5. Precoder and equalizer design for multi-user MIMO FBMC/OQAM with highly frequency selective channels,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3