Brazilian stock market performance and investor sentiment on Twitter

Author:

Souza Dyliane Mouri Silva de,Martins Orleans SilvaORCID

Abstract

PurposeThis study identified how investor sentiment on Twitter is associated with Brazilian stock market return and trading volume.Design/methodology/approachThe study analyzes 314,864 tweets between January 1, 2017, to December 31, 2018, collected with the Tweepy library. The companies’ financial data were obtained from Refinitiv Eikon. Using the netnographic method, a Twitter Investor Sentiment Index (ISI) was constructed based on terms associated with the stocks. This Twitter sentiment was attributed through machine learning using the Google Cloud Natural Language API. The associations between Twitter sentiment and market performance were performed using quantile regressions and vector auto-regression (VAR) models, because the variables of interest are heterogeneous and non-normal, even as relationships can be dynamic.FindingsIn the contemporary period, the ISI is positively correlated with stock market returns, but negatively correlated with trading volume. The autoregressive analysis did not confirm the expectation of a dynamic relationship between sentiment and market variables. The quantile analysis showed that the ISI explains the stock market return, however, only at times of lower returns. It is possible to state that this effect is due to the informational content of the tweets (sentiment), and not to the volume of tweets.Originality/valueThe study presents unprecedented evidence for the Brazilian market that investor sentiment can be identified on Twitter, and that this sentiment can be useful for the formation of an investment strategy, especially in times of lower returns. These findings are original and relevant to market agents, such as investors, managers and regulators, as they can be used to obtain abnormal returns.

Publisher

Emerald

Subject

Management of Technology and Innovation,Marketing,Business and International Management,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3