Micro downtime

Author:

Zennaro Ilenia,Battini Daria,Sgarbossa Fabio,Persona Alessandro,De Marchi Rosario

Abstract

Purpose Automated flow line manufacturing systems are becoming more and more relevant in industry, especially in the food and beverage sector. Improving the efficiency of automated flow line manufacturing systems is the core objectives of all companies as measured by the overall equipment effectiveness (OEE) index. The purpose of this paper is to carry out an innovative micro downtime data collection and statistical analysis in the food and beverage sector; it introduces a numerical indicator called “Cost Performance Indicator-CPI” to estimate the performance improvement of investment activities. Moreover this analysis will be used as a basis to carry out a new simulative model to study micro downtime of automatic production lines. In addition, the presented micro downtime data collection and statistical analysis will be used to construct a new simulative model to support improvement activities. Design/methodology/approach Descriptive and statistical analyses are carried out about OEE, time to repair (TTR) and time to failure (TTF) data. The least efficient production line is identified and principal causes of inefficiency are investigated. Micro downtime (downtime lower than 15 minutes) covers 57 percent of inefficiency. Investigations are carried out into the three principal machines affected by this inefficiency. The study then investigates the causes of micro downtime of these machines using ad hoc data collection and analysis. The probability distributions of TTF and TTR are evaluated and an analysis of micro downtime causes and a cause-effect is carried out. The most attractive investment in terms of recoverable OEE (1.44 percent) and costs is analyzed through the calculation of a CPI. One of the conclusions is to recommend the introduction of a payback period with a variable contribution margin. Findings This study get the basis for the construction of a new simulative model based on ad hoc micro downtime probability distributions, applied in automated flow line manufacturing systems. It gives an effort to downtime analysis in automated production lines and a guideline for future analysis. Results of this study can be generalized and extended to other similar cases, in order to study similar micro downtime inefficiency of other production lines. The statistical analysis developed could also potentially be used to further investigate the relationship between the reliability of specific machines and that of the entire line. Originality/value The case study presents a new detailed micro downtime data collection and statistical analysis in the beverage sector with the application of a numerical indicator, the CPI, in order to drive future actions. In addition, the presented micro downtime data collection and statistical analysis will be used to construct a new simulative model to support improvement activities. Moreover, results can be generalized and used as a basis for other micro downtime analyses involving the main causes of inefficiency in automated production lines.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference68 articles.

1. Integration of overall equipment effectiveness (OEE) and reliability method for measuring machine effectiveness;South African Journal of Industrial Engineering,2012

2. Uncertainty in the analysis of the overall equipment effectiveness on the shop floor;IOP Conference Series: Materials Science and Engineering,2013

3. An appraisal of maintenance practice in food industries in Nigeria;Journal of Food Engineering,2004

4. Downtime analysis of drilling machines and suggestions for improvements;Journal of Quality in Maintenance Engineering,2014

5. Simulation-based analysis and productivity improvement of a fully automatic bottle-filling production system: a practical case study,2010

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3