Determination of driving power and dependency of wastes in the healthcare sector: a lean and ISM-Based approach

Author:

Kharub ManjeetORCID,Gupta Himanshu,Rana SudhirORCID,McDermott OliviaORCID

Abstract

PurposeThe objective of this study is to systematically identify, categorize and assess the driving factors and interdependencies associated with various types of healthcare waste. The study specifically focuses on waste that has been managed or is recommended for treatment through the application of Lean Six Sigma (LSS) methodologies.Design/methodology/approachTo accomplish the study’s objectives, interpretive structural modeling (ISM) was utilized. This analytical tool aided in quantifying the driving power and dependencies of each form of healthcare waste, referred to as “enablers,” as well as their related variables. As a result, these enablers were classified into four distinct categories: autonomous, dependent, linkage and drivers or independents.FindingsIn the healthcare sector, the “high cost” (HC) emerges as an autonomous variable, operating with substantial independence. Conversely, variables such as skill wastage, poor service quality and low patient satisfaction are identified as dependent variables. These are distinguished by their low driving power and high dependency. On the flip side, variables related to transportation, production, processing and defect waste manifest strong driving forces and minimal dependencies, categorizing them as independent factors. Notably, inventory waste (IW) is highlighted as a salient issue within the healthcare domain, given its propensity to engender additional forms of waste.Research limitations/implicationsEmploying the ISM model, along with comprehensive case study analyses, provides a detailed framework for examining the complex hierarchies of waste existing within the healthcare sector. This methodological approach equips healthcare leaders with the tools to accurately pinpoint and eliminate unnecessary expenditures, thereby optimizing operational efficiency and enhancing patient satisfaction. Of particular significance, the study calls attention to the key role of IW, which often acts as a trigger for other forms of waste in the sector, thus identifying a crucial area requiring focused intervention and improvement.Originality/valueThis research reveals new insights into how waste variables are structured in healthcare, offering a useful guide for managers looking to make their waste-reduction strategies more efficient. These insights are highly relevant not just for healthcare providers but also for the administrators and researchers who are helping to shape the industry. Using the classification and ranking model developed in this study, healthcare organizations can more easily spot and address common types of waste. In addition, the model serves as a useful tool for practitioners, helping them gain a deeper, more detailed understanding of how different factors are connected in efforts to reduce waste.

Publisher

Emerald

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3