Optimal new product design using reverse quality function deployment with nonlinear regression modeling

Author:

Wang JianORCID,Tan YiORCID,Zhang JingzhiORCID,Han YajuanORCID

Abstract

PurposeQuality function deployment (QFD) has been widely applied in new product development, but existing research on QFD has some limitations. Primarily, QFD lacks the capability to provide feedback on the satisfaction degree of customer requirements (CRs) according to the actual values of engineering characteristics (ECs). In addition, QFD does not quantitatively consider the interrelationships among ECs. Reverse QFD (R-QFD) was introduced to implement the feedback process. On this basis, this paper quantitatively considers the interrelationships among ECs in the R-QFD model and extends these relationships to encompass combinations of multiple ECs, aiming to improve the inference accuracy of the model.Design/methodology/approachA nonlinear regression model was established between CRs and ECs, aiming to infer the satisfaction degree of CRs based on the implementation status of ECs. This model considers the interdependencies among ECs and extends the consideration of pairwise EC correlations from every two to every fifteen. Lingo Software is utilized to seek solutions for this program. To facilitate the implementation of the program, a directive to simplify the solution has been proposed.FindingsThe experimental results indicate that the interrelationships among ECs significantly affect the inference accuracy of the R-QFD model, thereby verifying the necessity of considering higher-order interrelationships among ECs within the R-QFD framework. Based on the results from data experiments, this paper also proposes research recommendations pertaining to ECs hierarchy for varying quantities of ECs.Originality/valueThe outcomes of this study have further refined the R-QFD model, addressing its limitations of ignoring the interrelationships among ECs. This transformation elevates the R-QFD model from a relatively simple linear model to a nonlinear model formed through modeling, thereby enhancing its accuracy and applicability. In practical terms, this study provides case support for the application of the R-QFD model in manufacturing industry.

Publisher

Emerald

Reference23 articles.

1. Integrating AHP with QFD for robot selection under requirement perspective;International Journal of Production Research,2005

2. Strategic management of logistics service: a fuzzy QFD approach;International Journal of Production Economics,2006

3. A non-linear possibilistic regression approach to model functional relationships in product planning;International Journal of Advanced Manufacturing Technology,2006

4. An evaluation approach to engineering design in QFD processes using fuzzy goal programming models;European Journal of Operational Research,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3