An anti-interference detection algorithm for parking monitoring systems

Author:

Dong Ani,Zhang ZushengORCID,Chen Jiaming

Abstract

Purpose Magnetic sensors have recently been proposed for parking occupancy detection. However, there has adjacent interference problem, i.e. the magnetic signal is easy to be interfered by the vehicles which are parking on adjacent spaces. The purpose of this paper is to propose a sensing algorithm to eliminate the adjacent interference. Design/methodology/approach The magnetic signals are converted to the pattern representation sequences, and the similarity is calculated using the pattern distance. The detection algorithm includes two levels: local decision and data fusion. In the local decision level, the sampled signals can be divided into three classes: vacant, occupied and uncertain. Then a collaborative decision is used to fusion the signals which belong to the uncertain class for the second level. Findings An experiment system included 60 sensor nodes that were deployed on bay parking spaces. Experiment results show that the proposed algorithm has better detection accuracy than existing algorithms. Originality/value This paper proposes a data fusion algorithm to eliminate adjacent interference. To balance the energy consumption and detection accuracy, the algorithm includes two levels: local decision and data fusion. In most of cases, the local decision can obtain the accurate detection result. Only the signals that cannot be correctly detected at the local level need data fusion operation.

Publisher

Emerald

Subject

General Computer Science

Reference25 articles.

1. A hierarchical clustering of features approach for vehicle tracking in traffic environments;International Journal of Intelligent Computing and Cybernetics,2016

2. Modelling contiki based IoT systems,2017

3. Road vehicle detection and classification using magnetic field measurement;IEEE Access,2019

4. Cheung, S.Y. and Varaiya, P. (2007), “Traffic surveillance by wireless sensor networks”, final technical report, University of California, Berkeley, CA.

5. Traffic measurement and vehicle classification with a single magnetic sensor;Transportation Research Record,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3