Auto-attentional mechanism in multi-domain convolutional neural networks for improving object tracking

Author:

Huang JinchaoORCID

Abstract

PurposeMulti-domain convolutional neural network (MDCNN) model has been widely used in object recognition and tracking in the field of computer vision. However, if the objects to be tracked move rapid or the appearances of moving objects vary dramatically, the conventional MDCNN model will suffer from the model drift problem. To solve such problem in tracking rapid objects under limiting environment for MDCNN model, this paper proposed an auto-attentional mechanism-based MDCNN (AA-MDCNN) model for the rapid moving and changing objects tracking under limiting environment.Design/methodology/approachFirst, to distinguish the foreground object between background and other similar objects, the auto-attentional mechanism is used to selectively aggregate the weighted summation of all feature maps to make the similar features related to each other. Then, the bidirectional gated recurrent unit (Bi-GRU) architecture is used to integrate all the feature maps to selectively emphasize the importance of the correlated feature maps. Finally, the final feature map is obtained by fusion the above two feature maps for object tracking. In addition, a composite loss function is constructed to solve the similar but different attribute sequences tracking using conventional MDCNN model.FindingsIn order to validate the effectiveness and feasibility of the proposed AA-MDCNN model, this paper used ImageNet-Vid dataset to train the object tracking model, and the OTB-50 dataset is used to validate the AA-MDCNN tracking model. Experimental results have shown that the augmentation of auto-attentional mechanism will improve the accuracy rate 2.75% and success rate 2.41%, respectively. In addition, the authors also selected six complex tracking scenarios in OTB-50 dataset; over eleven attributes have been validated that the proposed AA-MDCNN model outperformed than the comparative models over nine attributes. In addition, except for the scenario of multi-objects moving with each other, the proposed AA-MDCNN model solved the majority rapid moving objects tracking scenarios and outperformed than the comparative models on such complex scenarios.Originality/valueThis paper introduced the auto-attentional mechanism into MDCNN model and adopted Bi-GRU architecture to extract key features. By using the proposed AA-MDCNN model, rapid object tracking under complex background, motion blur and occlusion objects has better effect, and such model is expected to be further applied to the rapid object tracking in the real world.

Publisher

Emerald

Subject

General Computer Science

Reference37 articles.

1. Efficient object tracking using hierarchical convolutional features model and correlation filters;The Visual Computer,2021

2. Designing a composite deep learning based differential protection scheme of power transformers;Applied Soft Computing,2020

3. Covid-deepnet: hybrid multimodal deep learning system for improving covid-19 pneumonia detection in chest x-ray images;Computers, Materials and Continua,2021

4. Attention augmented convolutional networks,2019

5. Fully-convolutional siamese networks for object tracking,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unethical use of information access and analytics in B2B service organisations: The dark side of behavioural loyalty;Industrial Marketing Management;2023-02

2. Flame smoke detection algorithm based on YOLOv5 in petrochemical plant;International Journal of Intelligent Computing and Cybernetics;2023-01-17

3. Visual Object Tracking Using Machine Learning;Science, Engineering Management and Information Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3