Exploring compression and parallelization techniques for distribution of deep neural networks over Edge–Fog continuum – a review

Author:

Nazir AzraORCID,Mir Roohie Naaz,Qureshi Shaima

Abstract

PurposeThe trend of “Deep Learning for Internet of Things (IoT)” has gained fresh momentum with enormous upcoming applications employing these models as their processing engine and Cloud as their resource giant. But this picture leads to underutilization of ever-increasing device pool of IoT that has already passed 15 billion mark in 2015. Thus, it is high time to explore a different approach to tackle this issue, keeping in view the characteristics and needs of the two fields. Processing at the Edge can boost applications with real-time deadlines while complementing security.Design/methodology/approachThis review paper contributes towards three cardinal directions of research in the field of DL for IoT. The first section covers the categories of IoT devices and how Fog can aid in overcoming the underutilization of millions of devices, forming the realm of the things for IoT. The second direction handles the issue of immense computational requirements of DL models by uncovering specific compression techniques. An appropriate combination of these techniques, including regularization, quantization, and pruning, can aid in building an effective compression pipeline for establishing DL models for IoT use-cases. The third direction incorporates both these views and introduces a novel approach of parallelization for setting up a distributed systems view of DL for IoT.FindingsDL models are growing deeper with every passing year. Well-coordinated distributed execution of such models using Fog displays a promising future for the IoT application realm. It is realized that a vertically partitioned compressed deep model can handle the trade-off between size, accuracy, communication overhead, bandwidth utilization, and latency but at the expense of an additionally considerable memory footprint. To reduce the memory budget, we propose to exploit Hashed Nets as potentially favorable candidates for distributed frameworks. However, the critical point between accuracy and size for such models needs further investigation.Originality/valueTo the best of our knowledge, no study has explored the inherent parallelism in deep neural network architectures for their efficient distribution over the Edge-Fog continuum. Besides covering techniques and frameworks that have tried to bring inference to the Edge, the review uncovers significant issues and possible future directions for endorsing deep models as processing engines for real-time IoT. The study is directed to both researchers and industrialists to take on various applications to the Edge for better user experience.

Publisher

Emerald

Subject

General Computer Science

Reference131 articles.

1. Tensorflow: large-scale machine learning on heterogeneous distributed systems,2016

2. A survey of machine and deep learning methods for internet of things (IoT) security;IEEE Communications Surveys and Tutorials,2020

3. Moving convolutional neural networks to embedded systems: the alexnet and vgg-16 case,2018

4. A state-of-the-art survey on deep learning theory and architectures;Electronics,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3