Numerical and experimental investigation of bulk stress distribution in edge under different clamping sequence

Author:

Wang Hua,Wang Hailong

Abstract

Purpose The edge is a typical aero-structural compliant part, whose length-width ratio is about 60:1 and height-thickness ratio is about 30:1. Distortion of the edge is mainly caused by the bulk stresses which come from the manufacturing process of the plates. This paper aims to investigate the effect of clamping sequence on the bulk stress distribution in the edge. Design/methodology/approach The paper conducts the numerical and experimental investigations to predict the bulk stress distribution in the edge under different clamping sequences. A finite element model of the plate with residual stress after quenching and stretching is constructed. The edge is milled from the plate numerically and is ready for clamping. The contact model between the clamper and the edge is constructed to simulate the clamping process. Then the edge is virtually clamped in different clamping sequences, and different deformations and bulk stresses are obtained. An experimental edge milled from the plate and a designed clamping platform are used to precisely control clamping force to verify the effect of clamping sequence on the bulk stress distribution in the edge. The experimental edge’s distortions, relative displacements between the edge and the clamper and clamping forces validate the proposed numerical model. Findings The primary cause of bulk stress redistribution is the friction between the rigid clamper and the compliant edge. The edge exhibits different deformation under different clamping sequences because of its compliant characteristics. Originality/value The proposed numerical model of the edge could predict the bulk stress distribution in the edge under different clamping sequence. The developed clamping platform could be used to conduct clamping experiments, including experiments with different clamping forces, sequences and different clamping positions. It will help to systematically improve the compliant assembling efficiency in civil aircraft industry.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference22 articles.

1. The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly;Structural Engineering and Mechanics,2013

2. Deformation control through fixture layout design and clamping force optimization;The International Journal of Advanced Manufacturing Technology,2008

3. Electro-thermo-mechanical analysis of high-power press-pack insulated gate bipolar transistors under various mechanical clamping conditions;IEEJ Journal of Industry Applications,2014

4. Analysis and optimization of fixture under dynamic machining condition with chip removal effect;Journal of Intelligent Manufacturing,2014

5. Fixture clamping force optimisation and its impact on workpiece location accuracy;The International Journal of Advanced Manufacturing Technology,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards advanced prediction and control of machining distortion: a comprehensive review;The International Journal of Advanced Manufacturing Technology;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3