Conceptual design of a new experimental setup to simulate aircraft tyre spin-up dynamics

Author:

Mahjouri Saeed,Shabani Rasoul,Skote Martin

Abstract

Purpose The first touchdown moment of aircraft tyres on a runway is the critical phase where maximum of the vertical and horizontal ground loads is produced. Some valuable drop tests have been performed at Langley research centre to simulate the touchdown and the spin-up dynamics. However, a long impact basin and a huge power source to accelerate and decelerate the landing gear mechanism have been used. Based on a centrifugal mechanism, the purpose of this paper is to propose the conceptual design of a new experimental setup to simulate the spin-up dynamics. Design/methodology/approach A schematic view of the proposed mechanism is presented, and its components are introduced. Operating condition of the system and the test procedure are discussed in detail. Finally, tyre spin-up dynamics of Boeing 747 is considered as a case study, and operating condition of the system and the related test parameters are extracted. Findings It is shown that the aircraft tyre spin-up dynamics can be simulated in a limited laboratory space with low energy consumption. The proposed setup enables the approach velocity, sink rate and vertical ground load to be adjusted by low power actuators. Hence, the proposed mechanism can be used to simulate the tyre spin-up dynamics of different types of aircraft. Research limitations/implications It is important to note that more details of the setup, including the braking and actuating mechanisms together with their control procedures, should be clarified in practice. In addition, the curved path introduced as the runway will cause errors in the results. Hence, a compromise should be made between the tyre pressure, path curvature, the induced error and the cost of the experimental setup. Practical implications The proposed experimental setup could be constructed in a limited space and at a relatively low cost. Low power actuators are used in the proposed system. Hence, in addition to the performance tests, fatigue tests of the landing gear mechanism will also be possible. Originality/value Based on a centrifugal mechanism, the conceptual design of a new experimental setup is presented for simulating the tyre spin-up dynamics of aircraft. Considering that the drag load developed during tyre spin-up following initial touchdown is an important factor governing the design of the landing gear mechanism and aircraft structure, the authors hope this paper encourages engineers to continuously make efforts to increase the transparency of the touchdown process, enabling optimisation of landing gear design.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Aircraft tire temperature at touchdown with wheel prerotation;Journal of Aircraft,2017

2. Besselink, I.J.M. (2000), “Shimmy of aircraft main landing gears”, Delft, Technische universiteit delft. PhD thesis, available at: https://pure.tue.nl/ws/portalfiles/portal/2819299/581815718970472.pdf

3. Fly-by-Pi: open source closed-loop control for geotechnical centrifuge testing applications;HardwareX,2020

4. Investigation on structural dynamics of landing gear;Materials Today: Proceedings,2021

5. Spin-up studies of the space shuttle orbiter main gear tire,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3