Aerodynamic flow modelling of NACA 0010 using 2D panel and Jukouwski methods

Author:

Bhargava Vasishta,Maddula Satya Prasad,Venkata Neigapula Swamy Naidu,Khan Md. Akhtar,Padhy Chinmaya Prasad,Yagya Dutta Dwivedi

Abstract

Purpose This paper aims to model the aerodynamic flow characteristics of NACA0010 for various angle of attacks including stall for incompressible flows using panel methods. This paper also aims to quantify the surface pressure distribution on streamlined bodies and validate the results with analytical Jukouwski method and inverse panel methods that can predict the aerodynamic flow behaviour using the geometric iteration approach. Design/methodology/approach The 2 D panel method was implemented in Qblade software v.06 which uses the fundamental panel method which rely on source strengths and influence coefficients to determine the velocity and pressure fields on the surface. The software implements the boundary layer or viscous effects to determine the influence on aerodynamic performance at various angles of attack. Jukouwski method is also evaluated for predicting aerodynamic characteristics and is based on the geometric iteration approach. Then complex aerodynamic flow potentials are determined based on the source strengths which are used to predict the pressure and velocity fields. Findings At low to moderate angles of attack, panel and Jukouwski methods predict similar results for surface pressure coefficients comparable to Hess and Smith inverse method. In comparison to panel method, results from the Jukouwski mapping method predicted the pressure coefficient conservatively for the same free stream conditions. With increase in Reynolds number, lift coefficient and aerodynamic performance improved significantly for un-tripped aerofoil when stall angle is approached when compared to tripped aerofoil. Practical implications This study demonstrated that panel methods have higher efficacy in terms of computational time or resources and thus can provide benefits to many real-world aircraft or aerospace design applications. Originality/value Even though panel and Jukouwski methods have been studied extensively in the past, this paper demonstrates the efficacy of both methods for modelling aerodynamic flows that range between moderate to high Reynolds number which are critical for many aircraft applications. Both methods have been validated with analytical and inverse design methods which are able to predict aerodynamic flow characteristics for simple bluff bodies, streamlined aerofoils as well as bio-inspired corrugated aerofoils.

Publisher

Emerald

Subject

Aerospace Engineering

Reference27 articles.

1. Understanding abrupt leading edge separation as a mechanism for the onset of dynamic stall,2018

2. Prediction of broadband noise from symmetric and cambered airfoils;Incas Bulletin,2018

3. Craig, W.S. and Huisjen, A. (2006), “Aerospace engineering fundamentals, ME 440”, Michigan State University, MI, available at: www.egr.msu.edu/classes/me440/somerton/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3