Partitioned artificial immune system for detection and identification of autonomous flight vehicle abnormal conditions

Author:

McLaughlin Ryan Gerald,Perhinschi Mario G.

Abstract

PurposeAn artificial immune system (AIS) for the detection and identification of abnormal operational conditions affecting an unmanned air vehicle (UAV) is developed using the partition of the universe approach. The performance of the proposed methodology is assessed through simulation within the West Virginia University (WVU) unmanned aerial system (UAS) simulation environment.Design/methodology/approachAn AIS is designed and generated for a fixed wing UAV using data from the WVU UAS simulator. A novel partition of the universe approach augmented with the hierarchical multiself strategy is used to define the self, within the AIS paradigm. Several 2-dimensional and 3-dimensional commanded trajectories are simulated under normal and abnormal conditions affecting actuators and sensors. Data recorded are used to build the AIS and develop an abnormal condition detection and identification scheme for the two categories of subsystems. The performance of the methodology is evaluated in terms of detection and identification rates, false alarms and decision times.FindingsThe proposed methodology for UAV abnormal condition detection and identification has the potential to support a comprehensive and integrated solution to the problem of aircraft subsystem health management. The novel partition of the universe approach has been proven to be a promising alternative to the previously investigated clustering methods by providing similar or better performance for the cases investigated.Research limitations/implicationsThe promising results obtained within this research effort motivate further investigation and extension of the proposed methodology toward a complete system health management process, including abnormal condition evaluation and accommodation.Practical implicationsThe use of the partition of the universe approach for AIS generation may potentially represent a valuable alternative to current clustering methods within the AIS paradigm. It can facilitate a simpler and faster implementation of abnormal condition detection and identification schemes.Originality/valueIn this paper, a novel method for AIS generation, the partition of the universe approach, is formulated and applied for the first time for the development of abnormal condition detection and identification schemes for UAVs. This approach is computationally less expensive and mitigates some of the issues related to the typical clustering approaches. The implementation of the proposed approach can potentially enhance the robustness of UAS for safety purposes.

Publisher

Emerald

Reference30 articles.

1. Generation of power plant artificial immune system using the partition of the universe approach;International Review of Automatic Control,2016

2. Development of an artificial immune system for power plant abnormal condition detection, identification, and evaluation;International Review of Automatic Control,2017

3. Immunity-based framework for autonomous flight in GNSS-denied environment;International Review of Aerospace Engineering,2019

4. Active fault diagnosis and major actuator failure accommodation: application to a UAV,2011

5. Future integrated systems concept for preventing aircraft loss-of-control accidents,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3