Abstract
PurposeThe purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic acoustic waves scattering by sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions).Design/methodology/approachThe elliptic boundary value problems in the singularly perturbed domains are equivalently reduced to couples of boundary integral equations with unknown densities given by boundary traces. In the case of circular or spherical holes, the spectral Fourier and Mie series expansions of the potential operators are used to derive the first-order term in the asymptotic expansion of the boundary traces for the solution to the two- and three-dimensional perturbed problems.FindingsAs the shape gradients of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.Originality/valueThe authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function in the iterated numerical solution of any shape optimization or imaging problem relying on time-harmonic acoustic waves propagation. When coupled with converging Gauss−Newton iterations for the search of optimal boundary parametrizations, it generates fully automatic algorithms.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference63 articles.
1. Optimal mesh size for inverse medium scattering problems;SIAM Journal on Numerical Analysis,2020
2. Optimization of current carrying multicables using topological and shape sensitivity;Journal of Mathematical Study,2019
3. Regularized combined field integral equations;Numerische Mathematik,2005
4. The application of integral equation methods to the numerical solution of some exterior boundary-value problems;Proceedings of the Royal Society London. Series A,1971
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献