Vibrations of complex composite double-column system by extended Laplace transform method

Author:

Zhao X.Z.ORCID,Chang Peter

Abstract

PurposeDouble-beam/column systems have drawn much attention in many engineering fields. This work aims to present the free and forced vibrations of a novel and complex double-column system with concentrated masses, axial loads and discrete viscoelastic supports subjected to the excitation of ground acceleration are solved by the extended Laplace transform method (ELTM).Design/methodology/approachIn this work, the authors proposed an extended Laplace transform method (ELTM), which is an exact and explicit analytical method. Firstly, the mathematical model simulating the vibrations of the double-column system is reformulated with Dirac's delta function. Secondly, the exact and explicit mode shape solutions are obtained, based on which the natural frequencies and dynamic responses are obtained. An illustrating example is presented to show the validity of the proposed method. A parametric study is carried out to investigate the influences of the non-dimensional column stiffness ratio and the support stiffness ratio on the peak dynamic displacement and velocity.FindingsIt is shown that the proposed method can give exact and explicit solutions of the mode shapes and natural frequencies. It is found that the asynchronous vibrations of the proposed double-column systems can be implemented to efficiently dissipate seismic energy, as shown in the time-histories of displacement and velocity.Practical implicationsThis research systematically studied the free and forced vibrations of the complex double-column system. The proposed extended ELTM is a general method. Its application to studying the energy dissipation capability implicates that the double-column system can be utilized to reduce responses in structures under earthquake attacks.Originality/valueThe proposed extended ELTM is original and powerful. Its application to study the complex double-columns system with discrete supports, concentrated masses and axial loads is novel.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3