Abstract
Purpose
This paper aims to propose an efficient and convenient numerical algorithm for two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations (of Hammerstein and mixed types).
Design/methodology/approach
The main idea of the presented algorithm is to combine Bernoulli polynomials approximation with Caputo fractional derivative and numerical integral transformation to reduce the studied two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations to easily solved algebraic equations.
Findings
Without considering the integral operational matrix, this algorithm will adopt straightforward discrete data integral transformation, which can do good work to less computation and high precision. Besides, combining the convenient fractional differential operator of Bernoulli basis polynomials with the least-squares method, numerical solutions of the studied equations can be obtained quickly. Illustrative examples are given to show that the proposed technique has better precision than other numerical methods.
Originality/value
The proposed algorithm is efficient for the considered two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations. As its convenience, the computation of numerical solutions is time-saving and more accurate.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献