An efficient return mapping algorithm for elastoplasticity with exact closed form solution of the local constitutive problem

Author:

De Angelis Fabio,Taylor Robert L.

Abstract

Purpose – The purpose of this paper is to present an efficient return mapping algorithm for elastoplastic constitutive problems of ductile metals with an exact closed form solution of the local constitutive problem in the small strain regime. A Newton Raphson iterative method is adopted for the solution of the boundary value problem. Design/methodology/approach – An efficient return mapping algorithm is illustrated which is based on an elastic predictor and a plastic corrector scheme resulting in an implicit and accurate numerical integration method. Nonlinear kinematic hardening rules and linear isotropic hardening rules are used to describe the components of the hardening variables. In the adopted algorithmic approach the solution of the local constitutive equations reduces to only one straightforward nonlinear scalar equation. Findings – The presented algorithmic scheme naturally leads to a particularly simple form of the nonlinear scalar equation which ultimately scales down to an algebraic (polynomial) equation with a single variable. The straightforwardness of the present approach allows to find the analytical solution of the algebraic equation in a closed form. Further, the consistent tangent operator is derived as associated with the proposed algorithmic scheme and it is shown that the proposed computational procedure ensures a quadratic rate of asymptotic convergence when used with a Newton Raphson iterative method for the global solution procedure. Originality/value – In the present approach the solution of the algebraic nonlinear equation is found in a closed form and accordingly no iterative method is required to solve the problem of the local constitutive equations. The computational procedure ensures a quadratic rate of asymptotic convergence for the global solution procedure typical of computationally efficient solution schemes. In the paper it is shown that the proposed algorithmic scheme provides an efficient and robust computational solution procedure for elastoplasticity boundary value problems. Numerical examples and computational results are reported which illustrate the effectiveness and robustness of the adopted integration algorithm for the finite element analysis of elastoplastic structures also under elaborate loading conditions.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3