Author:
Shojaei Arman,Boroomand Bijan,Mossaiby Farshid
Abstract
Purpose
– The purpose of this paper is to present a simple meshless solution method for challenging engineering problems such as those with high wave numbers or convection-diffusion ones with high Peclet number. The method uses a set of residual-free bases in a local form.
Design/methodology/approach
– The residual-free bases, called here as exponential basis functions, are found so that they satisfy the governing equations within each subdomain. The compatibility between the subdomains is weakly satisfied by enforcing the local approximation of the main state variables pass through the data at nodes surrounding the central node of the subdomain. The central state variable is first recovered from the approximation and then re-assigned to the central node to construct the associated equation. This leads to the least compatibility required in the solution, e.g. C0 continuity in Laplace problems.
Findings
– The authors shall show that one can solve a variety of problems with regular and irregular point distribution with high convergence rate. The authors demonstrate that this is impossible to achieve using finite element method. Problems with Laplace and Helmholtz operators as well as elasto-static problems are solved to demonstrate the effectiveness of the method. A convection-diffusion problem with high Peclet number and problems with high wave numbers are among the examples. In all cases, results with high rate of convergence are obtained with moderate number of nodes per cloud.
Originality/value
– The paper presents a simple meshless method which not only is capable of solving a variety of challenging engineering problems but also yields results with high convergence rate.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献