Detached eddy simulations for high speed axial flow fuel pumps with swept and straight blade impellers

Author:

Tao Ran,Xiao Ruofu,Wang Fujun

Abstract

Purpose High speed axial flow pumps are widely used in aircraft fuel systems. Conventional axial flow pumps often generate radial secondary flows at partial-load conditions which influence the flow structure and form a “saddle-shaped” region in the Q-H curve that can destabilize the operation. Thus, the “saddle-shaped” Q-H region must be eliminated. The paper aims to discuss these issues. Design/methodology/approach The swept stacking method is often used for radial flow control in turbo-machinery impeller blade design. Hence, this study uses the swept stacking method to design a high speed axial flow pump. The detached eddy simulation method and experiments are used to compare the performance of a swept blade impeller in a high speed axial fuel pump with the original straight blade impeller. Both the pump performance and internal flow characteristics are studied. Findings The results show separation vortices in the impeller with the straight blade design at partial-load conditions that are driven by the rotating centrifugal force to gather near the shroud. The swept geometry provides an extra force which is opposite to the rotating centrifugal force that creates a new radial equilibrium which turns the flow back towards the middle of the blade which eliminates the vortices and the “saddle-shaped” Q-H region. The swept blade impeller also improves the critical cavitation performance. Analysis of the pressure pulsations shows that the swept blade design does not affect the stability. Originality/value This study is the initial application of swept blades for axial flow liquid pumps. The results show how the swept stacking changes the radial equilibrium of the high density, high viscosity flow and the effects on the mass transfer and pressure pulsations. The swept blade effectively improves the operating stability of high speed fuel pumps.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3