Study on the application of big data techniques for the third-party logistics using novel support vector machine algorithm

Author:

Sun FeifeiORCID,Shi Guohong

Abstract

PurposeThis paper aims to effectively explore the application effect of big data techniques based on an α-support vector machine-stochastic gradient descent (SVMSGD) algorithm in third-party logistics, obtain the valuable information hidden in the logistics big data and promote the logistics enterprises to make more reasonable planning schemes.Design/methodology/approachIn this paper, the forgetting factor is introduced without changing the algorithm's complexity and proposed an algorithm based on the forgetting factor called the α-SVMSGD algorithm. The algorithm selectively deletes or retains the historical data, which improves the adaptability of the classifier to the real-time new logistics data. The simulation results verify the application effect of the algorithm.FindingsWith the increase of training times, the test error percentages of gradient descent (GD) algorithm, gradient descent support (SGD) algorithm and the α-SVMSGD algorithm decrease gradually; in the process of logistics big data processing, the α-SVMSGD algorithm has the efficiency of SGD algorithm while ensuring that the GD direction approaches the optimal solution direction and can use a small amount of data to obtain more accurate results and enhance the convergence accuracy.Research limitations/implicationsThe threshold setting of the forgetting factor still needs to be improved. Setting thresholds for different data types in self-learning has become a research direction. The number of forgotten data can be effectively controlled through big data processing technology to improve data support for the normal operation of third-party logistics.Practical implicationsIt can effectively reduce the time-consuming of data mining, realize the rapid and accurate convergence of sample data without increasing the complexity of samples, improve the efficiency of logistics big data mining, reduce the redundancy of historical data, and has a certain reference value in promoting the development of logistics industry.Originality/valueThe classification algorithm proposed in this paper has feasibility and high convergence in third-party logistics big data mining. The α-SVMSGD algorithm proposed in this paper has a certain application value in real-time logistics data mining, but the design of the forgetting factor threshold needs to be improved. In the future, the authors will continue to study how to set different data type thresholds in self-learning.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time Optimization Algorithm for Intelligent Logistics Transportation Routes Based on Big Data Analysis;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

2. Long - Term Forecast of Regional Economy Based on Least Squares Support Vector Machine;Proceedings of the 2024 International Academic Conference on Edge Computing, Parallel and Distributed Computing;2024-04-19

3. Enhancing IoT Security in Russian Language Teaching: A Improved BPNN and Blockchain-Based Approach for Privacy and Access Control;Scalable Computing: Practice and Experience;2024-04-12

4. Enhancing Personalization and Privacy Management with Support Vector Machines in High Dense Cloud Networks;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

5. Research on Detection Technology of Abnormal Data in College Physical Education Network Teaching Test Results;Scalable Computing: Practice and Experience;2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3