Preparation and characterization of in situ electrospun ZnS nanoparticles/PPV nanofibers

Author:

Xin Yi,Jiang Zijiang,Li Wenwen,Huang Zonghao,Wang Cheng

Abstract

Purpose – This paper aimed to prepare a kind of ZnS nanoparticles/poly(phenylene vinylene) (PPV) nanofibre and investigate its properties. Because the ZnS nanoparticles are important optoelectronic materials, their incorporation into one-dimensional (1D) nanoscale polymer matrices should be a meaningful subject for electrospinning. Design/methodology/approach – ZnS/PPV composite nanofibres with an average diameter of 600 nm were successfully prepared by a combination of the in situ method and electrospinning technique. The nanofibres were electrospun from Zn(CH3COO)2·2H2O and PPV precursor composite solution, and the ZnS/PPV fibres were obtained by exposure of the electrospun fibres to H2S gas to prepare ZnS nanoparticles in situ. Such fibres were characterised using X-ray Diffraction (XRD), Fourier transform infrared, transmission electron microscope (TEM), scanning electron microscope and photoluminescence (PL). The photoelectric properties of the fibres obtained were also investigated. Findings – XRD patterns proved that ZnS nanocrystals generated in the composite nanofibres. The TEM image showed that the nanocrystals were homogeneously dispersed in the nanofibres. The PL spectrum of ZnS/PPV composite nanofibres exhibited a blue shift relative to the PPV nanofibres. I-V curve of the single nanofibre device under 5.76 mW/cm2 light illumination showed that the composite nanofibres have good photoelectric properties. Research limitations/implications – The comparisons of advantages between ZnS/PPV nanofibres with similar nanofibres will be further expanded in a later research. Practical implications – Results demonstrate the promise of these novel nanostructures as ultraminiature photodetectors with the potential for integration into future hybrid nanophotonic devices and systems. Originality/value – The integration of inorganic semiconductor nanoparticles into organic conjugated polymers leads to composite materials with unique physical properties and important application potential. In this work, ZnS nanoparticles were introduced into PPV by an in situ method, so as to obtain a kind of novel 1D nanomaterials with good photoelectric properties.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3