Author:
Mahajan Umesh,Mhaske S.T.
Abstract
Purpose
This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.
Design/methodology/approach
Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.
Findings
The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.
Originality/value
This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.