Shape memory property of polybutylene adipate-co-terephthalate

Author:

Yu Laiming,Fu Yaqin,Dong Yubing

Abstract

Purpose The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely researched and rapidly developed biodegradable copolyester. In a tensile test, we found that the fractured PBAT samples had a heat-driven shape memory effect which piqued our interest, and it will lay a foundation for the application of PBAT in new fields (such as heat shrinkable film). Design/methodology/approach The shape memory effect of PBAT and the effect of the thermomechanical condition on its shape memory property were confirmed and systematically investigated by a thermal mechanical analyzer and tensile machine. Findings The results showed that the PBAT film had broad shape memory transform temperature and exhibited excellent thermomechanical stability and shape memory properties. The shape memory fixity ratio (Rf) of the PBAT films was increased with the prestrain temperature and prestrain, where the highest Rf exceeded 90%. The shape memory recovery ratio (Rr) of the PBAT films was increased with the shape memory recovery temperature and decreased with the prestrain value, and the highest Rr was almost 100%. Moreover, the PBAT films had high shape memory recovery stress which increased with the prestrain value and decreased with the prestrain temperature, and the highest shape memory recovery stress can reach 7.73 MPa. Research limitations/implications The results showed that PBAT had a broad shape memory transform temperature, exhibited excellent thermomechanical stability and shape memory performance, especially for the sample programmed at high temperature and had a larger prestrian, which will provide a reference for the design, processing and application of PBAT-based heat shrinkable film and smart materials. Originality/value This study confirmed and systematically investigated the shape memory effect of PBAT and the effect of the thermomechanical condition on the shape memory property of PBAT.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3