Author:
Varshney Niharika,Gupta Srikant,Ahmed Aquil
Abstract
Purpose
This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.
Design/methodology/approach
In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.
Findings
The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.
Research limitations/implications
This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.
Originality/value
This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.
Reference46 articles.
1. A set of calibrated metaheuristics to address a closed-loop supply chain network design problem under uncertainty;International Journal of Systems Science: Operations and Logistics,2021
2. Optimal supply chain design with product family: a cloud-based framework with real-time data consideration;Computers and Operations Research,2021
3. Designing profitable and responsive supply chains under uncertainty;International Journal of Production Research,2021
4. Multi-product pickup and delivery supply chain design with location-routing and direct shipment;International Journal of Production Economics,2020
5. Optimal design of a sustainable natural gas supply chain network under uncertainty;Chemical Engineering Research and Design,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献