Corrosion-induced degradation assessment of steel beam using vibration-based scheme

Author:

Paral AnimeshORCID,Samanta Amiya KumarORCID,Shandilya Amarendra Nath

Abstract

PurposeCatastrophe of steel-structured bridges due to progressive localized corrosion may lead to a major loss in terms of life and cost if not monitored continuously or periodically. The purpose of this paper is to present a vibration-based strategy to assess the severity and monitor the deterioration caused by corrosion-induced localized damage in a simply-supported steel beam.Design/methodology/approachThe threshold damage level is defined up to the yield limit of a simply supported steel beam of size ISMB 150 × 8 × 5 under three-point bending test and the progressive damage is induced through a continuous accelerated corrosion test. Change in the fundamental natural frequency due to localized damage in the experimental beam and the modulus of elasticity (E) in the corroded zone of an updated finite element (FE) model is evaluated.FindingsThe updated FE model of the damaged beam shows a clear trend with the progressive damage of the beam and, hence, can be used to monitor the severity of damage and remaining capacity assessment of the monitored beam.Originality/valueSteel-structured bridges are prone to localized corrosion attack, and there are no standardized process or predictive model available by international steel design codes on how to consider corrosion damage in the condition assessment analysis. The vibration-based methods have gained popularity for condition assessment, and are mostly confined to damage assessment of corroded reinforced concrete (RC) beams. In this work, a vibration-based approach is presented for degradation assessment of steel beam due to progressive localized corrosion using modal hammer test.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3