Structural-probabilistic modeling of fatigue failure under elastic-plastic deformation

Author:

Babich DmytroORCID,Bastun Volodymir,Dorodnykh Tatiana

Abstract

Purpose The purpose of this paper is to consider an approximate model of accumulation of microdefects in a material under repeated loading which makes it possible to define theoretical parameters of the fatigue failure (durability, fatigue limit, etc.). The model is involving the relevant law of distribution of ultimate (yield) stresses in the material of these members in combination with the basic characteristics of main mechanical properties of a material (ultimate and yield stresses and associated standard deviations). Design/methodology/approach The model of fatigue failure of brittle and elastoplastic materials based on the use of the structural-probabilistic approach and up-to-date ideas on the mechanism of material fracture is proposed. The model combines statistical fracture criteria, which are expressed in terms of damage concentrations, with the approximate model of microcrack accumulation under repeating loading of the same level. According to these criteria, the fatigue failure begins with the accumulation of separation- or shear-type microdefects up to the level of critical values of their density. Findings The failure mechanism is associated with the accumulation of dispersed microdamages under repeated loading. The critical value of the density of the microdamages, which are identified with those formed either by separation or shear under static loading in consequence of simple tension, compression or shear, is accepted as the criterion of the onset of fatigue failure. The fatigue being low-cycle or high-cycle is attributed to accumulation of shear microdamages in the region of plastic deformation in the former case and microdamages produced by separation under elastic deformation in the latter one. Originality/value The originality of the paper consists in the following. The authors theoretically define parameters of the fatigue failure (durability, fatigue limit, etc.) using the model in combination with the statistical failure (yield) criteria appearing in the damage measures. The constructed fatigue diagram has discontinuities on the conditional boundary dividing domains with the shear-type and separation-type fractures of structural elements. Such results are supported by the experimental results.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3