Predicting crack in a beam-like structure through an over fitting verified regression model

Author:

Choudhury SasankaORCID,Thatoi Dhirendra Nath,Hota Jhalak,Sau Suman,Rao Mohan D.

Abstract

Purpose The purpose of this paper is to identify the crack in beam-like structures before the complete failure or damage occurs to the structure. The beam-like structure plays an important role in modern architecture; hence, the safety of this structure is much dependent on the safety of the beam. Hence, predicting the cracks is much more important for the safety of the overall structure. Design/methodology/approach In the present work, the regression analysis has been carried out through LASSO and Ridge regression models. Both the statistical models have been well implemented in the detection of crack depth and crack location. A cantilever beam-like structure has been taken for the analysis in which the first three natural frequencies have been considered as the independent variable and crack location and depth is used as the dependent variable. The first three natural frequencies, f1, f2 and f3 are used as an independent variable. The crack location and crack depth are estimated though the regressor models and the accuracy are compared, to verify the correctness of the estimation. Findings As stated in the purpose of work, the main aim of the present work is to identify the crack parameters using an inverse technique, which will be more effective and will provide the results with less time. The data used for regression analysis are obtained from theoretical analysis and later the theoretical results are also verified through experimental analysis. The regression model developed is tested for its Bias Variance Trade-off (“Bias” – Overfitting, “variance” – generalization). The regression results have been compared with the theoretical results to check the robustness in the subsequent result section. Originality/value The idea is an amalgamation of existing and well-established technologies, that is aimed to achieve better performance for the given task. A regressor is trained from the data obtained through numerical simulation. The model is developed taking bias variance trade-off into consideration. This generalized model gives us very much acceptable performance.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3