Simulation of reinforced concrete beam retrofitted with steel angles subjected to flexure

Author:

Shakib SheikhORCID,Morshed Abu ZakirORCID,Kholil Md IbrahimORCID,Hossain Md Akhtar

Abstract

PurposeThe study focused on improving stiffness and premature failure, the weaknesses of the other retrofitting techniques and the retrofitted beam. A detailed study regarding the section properties and effective length of the angles was also carried out in this study.Design/methodology/approachIn this article, a comprehensive study was carried out using a finite element method to investigate the behavior and performance of steel angles as a retrofitting technique subjected to flexure. A model was developed in ABAQUS and validated with the available experimental works. The model was then applied to examine the beams retrofitted with the steel angles.FindingsFrom the investigation, the strengthening technique successfully enhanced the flexural capacity and stiffness of the beam. The stiffness of the retrofitted beam achieved more than 2.5 times of the controlled beam. The thickness and flange width of the angles improved both the load capacity and stiffness whereas, web width, having same flange width, improved the stiffness only. This study also illustrates that a premature failure can be minimized by maintaining L/S (length to span) ratio between 0.7 and 1.0 along with the welding to provide the connections between the angles and stirrups.Practical implicationsThe developed model and the findings can be used for designing the retrofitting technique for the damaged as well as beams to be increased their capacity.Originality/valueThe research focused on the implication of a new technique of retrofitting, steel angles to improve the stiffness of beam, which is one of the major drawbacks of traditional techniques. Moreover, the research aimed to improve premature failure by bonding the retrofitting materials with the stirrups of the mother beam through welding.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3