Abstract
PurposeIn this paper, we consider p–n-junctions, manufactured by diffusion or ion implantation in a heterostructures. We analyzed influence of existing in heterostructure mismatch induced stresses on the current-voltage characteristics of the p–n-junctions. We also introduce an analytical approach for analysis of mass and heat transfer in heterostructures with account changes of their parameters on time, as well as their nonlinearity and mismatch induced stresses. In this paper we introduce an analytical approach for prognosis of the considered processes.Design/methodology/approachIn this paper, we consider p–n-junctions, manufactured by diffusion or ion implantation in a heterostructures. We analyzed influence of existing in heterostructure missmatch induced stresses on the current-voltage characteristics of the p–n-junctions. We also introduce an analytical approach for analysis of mass and heat transfer in heterostructures with account changes of their parameters on time, as well as their nonlinearity and missmatch induced stresses. In this paper we introduce an analytical approach for prognosis of the considered processes.FindingsIn this paper, we consider p–n-junctions, manufactured by diffusion or ion implantation in a heterostructures. We analyzed influence of existing in heterostructure missmatch induced stresses on the current-voltage characteristics of the p–n-junctions. We also introduce an analytical approach for analysis of mass and heat transfer in heterostructures with account changes of their parameters on time, as well as their nonlinearity and missmatch induced stresses. In this paper we introduce an analytical approach for prognosis of the considered processes.Originality/valueThis paper is original.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation