Abstract
PurposeErosion and abrasion are the prominent wear mechanisms reducing the lifetime of machine components. Both wear mechanisms are playing a role meanwhile, generating a synergy, leading to a material removal on the target. The purpose of study is to create a mathematical expression for erosive abrasive wear.Design/methodology/approachMany factors such as environmental cases and material character have an influence in erosive abrasive wear. In the work, changes in abrasive size and material hardness have been analyzed. As an abrasive particle, quartz sand has been used. All tests have been done in 20 wt.% slurry. Heat treatment has been applied to different steel specimens (steel grades C15, St 37 and Ck45) to change hardness value, which ranged from 185 to 880 Vickers hardness number.FindingsAfter the four-hour test, it is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. Worn surfaces of the targets have been examined to figure out the wear mechanisms at different conditions under scanning electron microscopy. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease. The diameters of micro-craters have been about 3–8 µm in hard materials and about 120–140 µm in soft materials.Research limitations/implicationsIt is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease.Practical implicationsThe study enables to indicate the dominant factor in worn steel used in mechanical components.Originality/valueAfter analyzing the test results, a novel mathematical expression, considering both abrasive size and material hardness, has been developed.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation
Reference39 articles.
1. Stepwise Erosion as a method for investigating the wear mechanisms at different impact angles in Slurry erosion;Journal of Engineering Science,2012
2. The effect of boronizing heat treatment on the slurry erosion of AISI 5117;Industrial Lubrication and Tribology,2018
3. Effect of heat treatment on the abrasive wear behavior of high chromium iron under dry sliding condition;Tribology in Industry,2012
4. Impact of solid particulate on hard materials;Journal of Mechanical Engineering,2010
5. Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry;Surface and Coating Technology,2005
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献