CFD analysis on hydrodynamic conditions of a designed spiral column photobioreactor for cultivation of microalgae

Author:

Chatterjee Sushovan

Abstract

Purpose The purpose of this study is analysis on fluid flow characteristics inside a modified designed spiral bubble column photo-bioreactor. Available fluid dynamic simulation of bubble column reactor (BCR) (which is well-known conventional photobioreactor) had shown significance contribution over the past two decades, where the fluid dynamics of the culture medium and mixing will influence the average irradiance and the light regimen to which the cells are exposed. This enhances the growth. To develop this, and also to cut down the cost parameter involving the production of biodiesel from algae, the growth rate of algae has to be enhanced. Design/methodology/approach Some design modification through a staggered spiral-path inside the bubble column design had been proposed and comparative simulation of the modified design has been reported. Three-dimensional simulations of gas–liquid flow both in the BCR and spiral path column reactor have been carried out using the Euler–Euler approach. Various graphs are plotted, and from comparing, it has been seen that the proposed reactor will enhance better mixing rate, which could help the growth rate in microalgae in the present proposed model. In this paper, an earnest attempt had made to carry out computational simulation of conventional BCR and designed reactor used for cultivation of microalgae which had analyzed using commercial code ANSYS 14. Findings From this work, it was observed that the average turbulence kinetic energy fluctuates more in designed reactor over the conventional photo bioreactor, which will in turn increase diffusivity and enhance transfer of mass, momentum and energy. The results provide comprehensive information concerning effect of fluid flow characteristics inside a modified designed spiral bubble-column photo-bioreactor. Originality/value Some of our earlier published results (www.scientific.net/AMM.592-594.2427) are also referred in this paper. This work had been performed under the financial aid from RPS project (no. 8,023/RID/RPS/27/11/12), sponsored by All India Council for Technical Education.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3