Modelling and optimization of laser welding of Al2024 aluminium alloy

Author:

Dey Upama,Duggirala Aparna,Mitra Souren

Abstract

Purpose Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing of automotive parts. The purposes of this paper are to conduct laser welding experiments with Al2024 in the lap joint configuration, model the laser welding process parameters of Al2024 alloys and use propounded models to optimize the process parameters. Design/methodology/approach Laser welding of Al2024 alloy has been conducted in the lap joint configuration. Then, the influences of explanatory variables (laser peak power, scanning speed and frequency) on outcome variables (weld width [WW], throat length [TL] and breaking load [BL]) have been investigated with Poisson regression analysis of the data set derived from experimentation. Thereafter, a multi-objective genetic algorithm (MOGA) has been used using MATLAB to find the optimum solutions. The effects of various input process parameters on the responses have also been analysed using response surface plots. Findings The promulgated statistical models, derived with Poisson regression analysis, are evinced to be well-fit ones using the analysis of deviance approach. Pareto fronts have been used to demonstrate the optimization results, and the maximized load-bearing capacity is computed to be 1,263 N, whereas the compromised WW and TL are 714 µm and 760 µm, respectively. Originality/value This work of conducting laser welding of lap joint of Al2024 alloy incorporating the Taguchi method and optimizing the input process parameters with the promulgated statistical models proffers a neoteric perspective that can be useful to the manufacturing industry.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference50 articles.

1. Parametric optimisation of gas metal arc dissimilar welding on AISI 304 stainless steel and low carbon steel;International Journal of Microstructure and Materials Properties,2019

2. Welding of dissimilar metals using gas metal arc and laser welding techniques: a review;Journal of Emerging Trends in Engineering and Applied Sciences,2017

3. Effects of post-weld heat treatments on the microstructure, mechanical and corrosion properties of gas metal arc welded 304 stainless steel;World Journal of Engineering,2020

4. Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al–Cu–Mg) 2024;Corrosion Science,2017

5. Natural light design for an ancient building: a case study;Journal of Cultural Heritage,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3