Preparation of urea formaldehyde resin/layered silicate nanocomposites

Author:

Ateş Esin,Uyanık Nurseli,Kızılcan Nilgün

Abstract

PurposeThe purpose of the research was as follows. In situ modified urea formaldehyde resins were prepared from clay (montmorillonite) and organoclay in the presence of base catalyst. Different clay contents (1 wt%, 3 wt%, 6 wt%) were used to produce clay modified nanocomposite resins. These nanocomposites were characterized with FT‐IR, XRD as structural analysis and DSC as thermal analysis and their hardness was evaluated as mechanical analysis. The thermal results was compatible with hardness measurements and showed that using clay/organoclay added resin as a surface coating material provides significant improvement.Design/methodology/approachDuring synthesis of the resin, modification was carried out using urea/formaldehyde with molar ratio of 1/1.6, under basic medium with pH=10 and with temperature of 70°C by loading pristine and organomodified layered silicates.FindingsX‐ray diffraction (XRD) results indicate that the interlayer space of pristine clay was increased significantly by one step, seeing that one step processes are crucial for industrial applications.Research limitations/implicationsThe reaction mixture must be stirred continuously. Temperature should be controlled in order to prevent the thermal curing of urea formaldehyde resin.Practical implicationsThis study provides technical information for the synthesis of nanocomposite resins. The clay or organoclay modified resins may also promote the adhesive strength of coating and also inhibit corrosion effects to metal surfaces of the coated area.Social implicationsThis resin will be used for the coating material.Originality/valueAs Tg‐Tm region of some nanocomposites is enhanced, and by assessing the results of hardness measurements, it is concluded that these samples have further improved mechanical properties as a coating material than urea formaldehyde resin has.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3