Surface modification of iron oxide (Fe2O3) pigment particles with amino-functional polysiloxane for improved dispersion stability and hydrophobicity

Author:

A. Jadhav Sushilkumar,Bongiovanni Roberta,L. Marchisio Daniele,Fontana Daniela,Egger Christian

Abstract

Purpose – The purpose of the present study is to use an amino-functional polysiloxane for the surface modification of red iron oxide (Fe2O3) pigment particles for their improved dispersion stability and hydrophobicity and to study the chemical interactions of polysiloxanes with the particle surface. Design/methodology/approach – Surface-treated red Fe2O3 pigment particles were prepared by treatment of the particles with different quantities of the (aminopropylmethylsiloxane)-dimethylsiloxane copolymer in concentrated suspensions in water. The samples were analysed with different instrumental and spectroscopic techniques to study the interaction of the polysiloxane with the particle surface and the effect of the surface treatment of the particles on their dispersion stability and hydrophobicity. Findings – Chemisorption of the amino-polysiloxane onto the surface of Fe2O3 particles resulted in stable layers which turned out to be helpful in improving greatly the dispersion stability of the particles as shown by the Static Light Scattering and Dynamic Light Scattering results. Formation of a polysiloxane coating onto the surface of the pigment particles was confirmed by studying the interactions of the polymer molecules with Fe2O3 surfaces by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy techniques. Practical implications – The surface-treated red Fe2O3 particles with improved dispersion stability can be important components of various formulations in applications such as the colouring of the cement or inorganic pigment-based paint formulations. Originality/value – The study provides mechanistic insights about the interactions of amino-polysiloxane with the red Fe2O3 particles. The process of surface modification of red Fe2O3 particles with the amino-functional polysiloxane showed increased hydrophobicity and dispersion stability which is an important requirement of the pigment-based formulations in real applications.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3