Role of Cu percentage in the Sn-xCu alloy on the mechanical performance at Sn-xCu/ENIG interface produced by laser soldering

Author:

Abdullah Muhammad Asyraf,Idris Siti Rabiatull Aisha

Abstract

Purpose Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most extensively used in the electronics industry. The Ag3Sn, which forms during isothermal ageing, can significantly degrade solder joint reliability. Sn–Ag–Cu solder’s high price further hindered its use in the electronics industry. This paper aims to investigate different copper percentages into Sn–xCu solder alloy to improve its microstructure and strength performance. Design/methodology/approach The solder alloys used in this work were Sn–xCu, where x = 0.0, 0.3, 0.5, 0.7, 1.0 Wt.%, which was soldered onto electroless nickel immersion gold (ENIG) substrate using carbon dioxide (CO2) gas laser. Then these samples were subjected to isothermal aging for 0, 200, 500, 1,000 and 2,000 h. The Sn–xCu solder alloy was fabricated through a powder metallurgy process. Findings Microstructure characterization showed that Cu addition resulted in fine and rounded shape of Cu–Sn–Ni particles. Shear strength of Sn–xCu solder joints was increased with increasing Cu content, but at aging duration of 1,000 h, it dropped slightly. It is believed that the strength improved due to the increment of diffusion rate during isothermal aging. Practical implications In a Cu–Sn solder, the recommended amount is 1.0 Wt.% of Cu. In extensive aging procedures, it was discovered that Sn1.0Cu solder improved the reliability of solder joints. The findings indicated that the innovative solder alloys might satisfy the needs of high-reliability applications. Originality/value The study shows that the right amount of Cu enhances the solidification of Sn–Cu solder, increasing the shear force of the Cu–Sn solder joint. The Sn1.0Cu exhibits a ductile fracture on the top microstructure, improving the joint’s average shear strength.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference45 articles.

1. Lead-free solders in microelectronics;Materials Science and Engineering: R: Reports,2000

2. Effects of sintering and its type on microstructural and tensile response of pure tin;Powder Metallurgy,2009

3. Development of high strength Sn-Cu solder using copper particles at nanolength scale;Journal of Alloys and Compounds,2009

4. The effect of laser-soldering parameters on the Sn-Ag-Cu/Cu interfacial reaction,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3