Static performance characteristics of hybrid journal bearings with plugged entry holes

Author:

Garg H.C.,Kumar Vijay

Abstract

PurposeThis paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricants. The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the power law. The performance characteristics are computed for the two values of power law index (n=1.0 and 0.566). The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing.Design/methodology/approachFinite element method has been used to solve generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor.FindingsThe computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing. The bearing configuration with plugged holes provides sufficient fluid film thickness and low power requirement as less lubricant is required to be pumped in the bearing.Originality/valueTo the best of the author's knowledge, no study which considers the influence of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricant is yet available in the literature.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3