Effect of current pulsing on super 304HCu weld joints

Author:

M. Vinoth Kumar,V. Balasubramanian

Abstract

Purpose Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general, austenitic stainless steels welded by conventional constant current gas tungsten arc welding (CC-GTAW) produce coarse columnar grains, alloy segregation and may result in inferior mechanical properties. Pulsed current gas tungsten arc welding (PC-GTAW) can control the solidification structure by altering the prevailing thermal gradients in the weld pool. Design/methodology/approach Super 304HCu tubes of Ø 57.1 mm and the wall thickness of 3.5 mm were autogenously welded using CC and PC-GTAW processes. Joints are characterized using optical microscopy, electron microscopy, energy dispersive spectroscopy and electron backscatter diffraction (EBSD) techniques. Hot tensile properties of the weld joints were evaluated and correlated with their microstructural features. Findings Current pulsing in GTAW has resulted in minimal eutectic film segregation, lower volume % of delta ferrite and appreciable improvement in tensile properties than CC-GTAW joints. Originality/value The EBSD boundary map and inverse pole orientation map of Super 304HCu weld joints evidence the grain refinement and much frequent high angle grain boundaries achieved using weld current pulsing.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference27 articles.

1. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process;Fusion Engineering and Design,2011

2. Coherent precipitation of copper in Super304H austenite steel;Materials Science and Engineering: A,2013

3. Optimizing the pulsed current GTAW parameters to attain maximum impact toughness;Materials and Manufacturing Processes,2007

4. Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels;Metallurgical Transactions A,1983

5. Grain boundary segregation of boron in an austenitic stainless steel;Applied Surface Science,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3