Integration of Six Sigma and simulations in real production factory to improve performance – a case study analysis

Author:

Ahmed Ali,Olsen John,Page John

Abstract

Purpose The overarching objective of this research is to integrate the Lean Six Sigma (LSS) framework with computer simulation to improve the production efficiency of a light-emitting diode (LED) manufacturing factory. Design/methodology/approach Recently, the idea of taking advantage of the benefits of Six Sigma and simulation models together has led both industry and the academy towards further investigation and implementation of these methodologies. From this perspective, the present research will illustrate the effectiveness of using LSS methodology in a real factory environment by using the combination of three simulation methods which are system dynamics (SD), discrete-event simulation (DES) and agent-based (AB) modelling. Findings The hybrid simulation method applied in this research was found to accurately mimic and model the existing real factory environment. The define, measure, analyse, control and improve (DMAIC)-based improvements showed that the applied method is able to improve machine utilization rates while balancing the workload. Moreover, queue lengths for several stations were shortened, and the average processing time was decreased by around 50%. Also, a weekly production increase of 25% was achieved while lowering the cost per unit by around 8%. Research limitations/implications While the case study used was for a LED manufacturing system, the proposed framework could be implemented for any other existing production system. The research also meticulously presents the steps carried out for the development of the multi-method simulation model to allow readers to replicate the model and tailor it for their own case studies and projects. The hybrid model enables managers to navigate the trade-off decisions they often face when choosing advanced production output ahead of continuous improvement practices. The adoption of methodologies outlined in this paper would attain improvements in terms of queue lengths, utilization, reduced costs and improved quality and efficiency of a real, small factory. The findings suggest improvements and create awareness among practitioners for the utilization of quality tools that will provide direct benefits to their companies. Although the multi-method simulation is effective, a limitation of the current study is the lack of micro details within each station. Furthermore, the results are all based on one specific case study which is not enough to suggest and generalized findings. Originality/value This research combines the use of the three main hybrid simulation paradigms (SD, DES and AB) in a unified framework DMAIC methodology. Choosing the right models in DMAIC is important, challenging and urgently necessary. Also, this paper shows empirical evidence on its effectiveness.

Publisher

Emerald

Subject

General Medicine

Reference90 articles.

1. Towards industry improvement in manufacturing with DMAIC;Advances in Intelligent Systems and Computing,2021

2. Adopting lean six sigma to AnyLogic simulation in a manufacturing environment,2015

3. Digital technology and quality management,2018

4. Improving baggage flow in the baggage handling system at a UAE-based airline using lean six sigma tools;Quality Engineering,2018

5. American Society for Quality ASQ (2020), “Insights on excellence (IoE) 2020”, Annual Research Report.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3