Uncovering risk professionals' intentions to use artificial intelligence: empirical evidence from the Italian setting

Author:

Ferri LucaORCID,Maffei Marco,Spanò RosannaORCID,Zagaria ClaudiaORCID

Abstract

PurposeThis study aims to ascertain the intentions of risk managers to use artificial intelligence in performing their tasks by examining the factors affecting their motivation.Design/methodology/approachThe study employs an integrated theoretical framework that merges the third version of the technology acceptance model 3 (TAM3) and the unified theory of acceptance and use of technology (UTAUT) based on the application of the structural equation model with partial least squares structural equation modeling (PLS-SEM) estimation on data gathered through a Likert-based questionnaire disseminated among Italian risk managers. The survey reached 782 people working as risk professionals, but only 208 provided full responses. The final response rate was 26.59%.FindingsThe findings show that social influence, perception of external control and risk perception are the main predictors of risk professionals' intention to use artificial intelligence. Moreover, performance expectancy (PE) and effort expectancy (EE) of risk professionals in relation to technology implementation and use also appear to be reasonably reliable predictors.Research limitations/implicationsThus, the study offers a precious contribution to the debate on the impact of automation and disruptive technologies in the risk management domain. It complements extant studies by tapping into cultural issues surrounding risk management and focuses on the mostly overlooked dimension of individuals.Originality/valueYet, thanks to its quite novel theoretical approach; it also extends the field of studies on artificial intelligence acceptance by offering fresh insights into the perceptions of risk professionals and valuable practical and policymaking implications.

Publisher

Emerald

Subject

Management Science and Operations Research,General Business, Management and Accounting

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3